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Theoretical models suggest scaling rules for a wide range 
of technically important physical properties of ionically 
and covalently bonded solids and melts. The properties 
so treated are the melting point, critical constants, Debye 
temperature, density, thermal expansion coefficient, and 
the usual elastic moduli. Scaling with universal pure 
numbers as expected by theory turns out to be possible 
only rarely, i f  at all. Instead, one must accept specific 
trends of the scaling factors that can be grouped by 
chemical families and therefore still be useful for the 
estimation of physical properties from composition data. 
Since the chemical bonding mode in most inorganic 
compounds is neither fully ionic nor fully covalent, 
definition of the interaction energy in the scaling 
parameters is least reliable when the usual coulombic 
potential is assumed, and is most reliable when a 
phenomenological definition is adopted, namely, the 
experimentally easily accessible energy of atomization. 
While perfectly feasible in crystals composed of simple 
ions, only the coulombic potential can be used for scaling 
the properties of substances containing complex ions. 
Other inherent limitations to the property estimation of 
inorganic substances, such as the well-known 
uncertainties of ion radii, will also be discussed. 

This work is to provide chemists with means to esti- 
mate the magnitude of equilibrium properties of ionically 
and covalently bonded inorganic solids and melts from a 
knowledge of their structural organization. Incidentally, 
this work is to encourage the use of similitude principles 
for the correlation of physical property data in the ab- 
sence of quantitatively reliable theories. 

The scope of these examples for the use of similitude 
principles has been restricted to the scaling of equilibri- 
um properties by readily accessible interparticle energy 
and distance measures. The properties selected for illus- 
tration of the principle are the Debye frequency of the 
crystal, the elastic constants, thermal expansion, and the 
melting point. Application of the technique to the techni- 
cally very interesting rate properties is an obvious exten- 
sion that is currently under way. 

General Principles 

The exact molecular theories of solids and liquids are 
quite awkward to use for the calculation of physical prop- 
erties. Moreover, they are not applicable for other than 
monatomic species. Hence it is generally more convenient 
to make the independent and dependent variables in the 
equations dimensionless with the molecule properties oc- 
curring in the equations. In all first-order approximations 
only three molecular parameters appear: the equilibrium 
potential energy, uo, between neighboring molecules, 
their equilibrium distance T o ,  and the mass per molecule, 
rn. 

These parameters can be calculated in principle from 
the electronic properties of atoms. In practice they are 
available from various experimental data, especially if  
one deals with monatomic systems. In the sense of the 
present treatment, ionic and covalent solids or melts are 
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considered to be composed of monatomic species, ex- 
cept for cases where one or more lattice positions per 
unit cell are occupied by complex ions. The complication 
caused by such ions will be discussed separately. 

In purely ionic systems (ignoring, in the present approx- 
imation, the repulsion component of U O ) ,  uo = (Ze)2/dij, 
where Z = effective valence acting between neighbor 
atoms i and j ,  e = elementary charge, and dij isstheir equi- 
librium distance, generally available from X-ray WyStal- 
lography. In the absence of experimental data, dij can be 
estimated’ from the usual ionic radii. Conversion of the 
indicated Coulomb energy to lattice energy requires the 
Madelung constant which is available for many crystals 
( 7 4 ) .  

Only few crystals and melts are held together by ionic 
forces alone or by covalent bonding alone. One generally 
deals with mixed bonding. Since’ purely covalent bond 
energies can be estimated from electronegativity data, 
one can estimate the total bonding energy if one knows 
the fractional ionic bonding. Such estimates are generally 
made by comparing the observed interatomic distance 
d i j ( O )  with the appropriate sum of the ionic radii. Then 
one can estimate the interatomic energy uo from the sum 
of these two energy components divided by one half of 
the coordination number, n,. 

A totally different approach is to identify uo as the 
measured energy of atomization, Ea, and set uo = 2 Ea/ 
n,, and proceed with a phenomenological rather than a 
theoretical definition of the molecule parameter. Then 
one would use the experimentally observed zero-point 
volume, Vo (4, as measure of the interatomic distance. 
This approach is restricted to solids or melts composed 
of monatomic species, since the internal cohesion of a 
complex ion-also measured in €,-may not contribute 
substantially to the system’s cohesive forces. With sub- 
stances containing complex ions one may be restricted 
to estimates based on the assumption of purely coulom- 
bic interaction. 

Comparisons of the generalized-i.e., dimensionless- 
properties with theory will be limited to comparison with 
the predictions of the Mie-Grueneisen equations of state 
and their derivatives. They are based on the assumption 
of central force fields and of a pair potential 

Whenever covalent bonding makes a substantial con- 
tribution, the exponents rn and n can have only qualita- 
tive significance (72), and deviations from theory might 
be substantial. 

Debye Frequency 

The heat capacity and several other physical properties 
of condensed phases can be estimated if their Debye fre- 
quency is known. Assuming that the crystal lattice acts 
as a simple harmonic oscillator assembly, the Debye fre- 
quency W D  would be given by 

W D  - (  1 /2 Tdij) ( rnnuo/p) 1 / 2  (2) 
where p is the reduced mass of the oscillating atoms. In 
the framework of the present system of generalized prop- 
erties, the generalized Debye frequency is 

WDdij(p/€a) ”* = COnSt (3) 
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for a family of crystals within which n,, m, and n are in- 
variant. In purely ionic lattices the generalized Debye fre- 
quency is 

o D ( d i j 3 p )  ' / * / Z e  = const (4) 

for a family of compounds within which n,, m, n, and the 
fraction t r  of ionic bonding are constant. 

Typical results are presented in Tables I and (I. Within 
the reliability limits imposed by comparatively sparse 
sampling in several compound classes, one can discern 
trends that are in order-of-magnitude agreement with ex- 
pectation from the simple theory back of Equation 2. The 
error limits of heat capacity and related predictions 
based on these generalizations should be tolerable for 
most engineering applications, if the standard deviations 
from the correlation mean are valid indications of likely 
prediction errors. 

Effects of anharmonicity and of lattice defects on the 
heat capacity at T > 8 D  must be estimated separately, of 
course. I t  should be noted that predictions of both of 
these also depend strongly on the assumed lattice energy 
(70). 

Elastic Constants 

lus Bo at OK the generalized form (9) 
The Mie-Grueneisen relations yield for the bulk modu- 

B o V o / U s  = 'h (m.n /m - n )  I [ (n/3)  + I ] ( V O / V ~ ' ~  - 
[ ( m / 3 )  + 1 I ( V o / V )  m/31 = F1 (m,n,p* )  (5) 

where p* is the packing density of the condensed phase. 
The same general form of relation holds for the other 
elastic moduli since Poisson's ratio at OK is  likewise a 
function of m,n,p*. At a fixed value of the zero-point 
packing density, F l ( r n , n )  takes on the numerical values 
shown in Figure 1. 

For molecular crystals one finds that the generalized 
elastic moduli depend very strongly on the packing densi- 
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Figure 1. Theoretical Relation Between the Generalized Bulk 
Modulus BoVo/u,and m,naccording to Equation 5 at V o / V  = 1 

Table I .  Generalized Debye Frequenciesa of lonically and Covalently Bonded Solids 

Substance Lattice bccb fcc hcp 

Metallic elements wDa(M/AH,) ' 1 2  0.93 f 0.07 1.13 f 0.075 0.87 & 0.1 
Alkali halides, MgO, etc. wDdi j ( D / € a )  1 '2 

wDdij (n; j /EL)  '" 0.303 f 0.04 
0.348 f 0.024 

Sulfide, oxides w D d i j ( n / E a )  ' I 2  0.122 f 0.012 
aFrom data of ref. 1 .  bAnd simple cubic. 

Table 11.  Generalized Bulk Modulia.(60Vo/Ea) of Metal Oxides, Sulfides, and Carbldes (at Room Temperature) 

Cubic crystals 
MgO: 1.75 
CaO: 1.80 Cas: 1.70 MnS: 2.26 FeO: 1.97 Fe30a: 2.16 
SrO: 2.45 ZrOz: 2.05 NiO: 2.38 
Tho?: 2.1 u02: 2.0 COO: 2.42 

Hexagonal crystals 
BeO: 2.65 
ZnO: 2.80 ZnS: 3.00 

CdS: 3.44 
Rhombic crystals 

~ 1 ~ 0 ~ :  2.08 
MnO: 2.05 

Triagonal crystals 
Fe2O3: 1.24 

Tetragonal crystals 
TiOn: 2.1 

From data of ref. 8. 
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Figure 2. Topography of zero-point packing density of alkali ha- 
lide crystals, from data of ref. 4 

F .  CI' Br I 

Figure 4. Generalized coulombic bulk moduli of alkali halides 
Note the different effectiveness of phenomenological and coulombic re- 
ducing parameter in producing a uniform generalized modulus 

,' 
F Cr Br' I 

Figure 3. Generalized phenomenological bulk moduli of alkali 
halides 
Note the different effectiveness of phenomenological and coulombic re- 
ducing parameter in producing a uniform generalized modulus 

ty (5) .  Hence it seemed worthwhile to examine the pack- 
ing density of a few ionic crystals before trying to corre- 
late their elastic moduli. The packing density of ionic 
crystals is defined as 

(6) p*  I /  . -  - (4  T / 3 )  P i j N A ( r i 3  + r j 3 )  / M  

where p is the measured density of the salt ( i j ) ,  M its 
molecular weight, r the ion radii, and N.4 Avogadro's 
number. 

The packing density data of the alkali halides have 
been plotted in Figure 2. Qualitatively these data exhibit 
the expected pattern for the fluorides and chlorides in 
that a minimum of the right magnitude ( - 0 . 5 2 )  appears 
at the point of equisized anion and cation. However, this 
trough does not continue diagonally toward the bottom 
row as one would expect if the ions were hard spheres. 
Instead, the trough continues parallel to the bottom row, 
suggesting that the increasing polarizability permits close 
squeezing of the heavy ions resulting in higher-than-ex- 
pected density. 

The corresponding graphs of the generalized elastic 
moduli (at OK) of the alkali halides (Figures 3-5)  show 
very little dependence on composition and none that can 
be related to the packing density. This observation 
suggests that one should be able to estimate the zero- 
point moduli in other families of ionic crystals once the 
modulus of one "family" member has been determined. 
A few random examples from other compound families 
have been collected in Table I I .  

The elastic moduli of the metallic elements span a 
range of about two orders of magnitude which are effec- 
tively collapsed into a range spanning about a factor of 
two by their dimensionless representation. This range is 
still wider than that for the ionic crystals and, in addition, 
forms a curious pattern when mapped onto the periodic 
table, as shown on Figures 6 and 7. There are a few 
unexplained reversals in relative magnitude between ad- 

F "  C f '  B f '  I" 

Figure 5. Generalized tensile moduli of alkali halides 

jacent elements as one moves from the bulk to the ten- 
sile modulus. Since the possibility of measurement errors 
cannot be excluded, it is perhaps premature to look for 
any sophisticated explanations for the waves on. these 
graphs. Yet, until the accuracy of the data is established 
and the strange oscillations have been give a rational 
background, it will be hard to predict the elastic proper- 
ties of still unmeasured elements or of alloys. 

The step from the zero-point moduli to their numerical 
value at any other temperature is most easily performed 
by the Wachtmann-Anderson equation 

B ( T )  = B o  - 2 ( Y ~ T B ~ ( B ~  - I)* exp(-BD/2 T )  (7) 
where cys is the cubic thermal expansion coefficient and 
81 is the dimensionless pressure coefficient dB/dP.  Both 
of these coefficients can also be represented as func- 
tions of rn, n, and p * .  The thermal expansion coefficient 
in generalized form is 

aus /CU = [ ( n  + rn + 1)/2] [ (m - n)/(m.n)] x 
[ n / 3  ( v s / ~ ) ~ ' ~  - ( m / 3 )  ( v s / v ) I - '  (8) 

the qualitative predictions of which are in good agree- 
ment with experimental data as shown by comparison of 
the numbers in Table I l l  with the numbers taken from 
Figure 8. 

However, a troublesome aspect is that the generalized 
expansion coefficient moves with temperature much as 
the closely related Grueneisen constant does. The ther- 
mal expansion coefficient estimated from the generalized 
relations is therefore only approximate at least at T < 
8 0 / 2 .  At T L 80, the generalized cys  is reasonably con- 
stant, and its magnitude is also tolerably well represented 
as a family constant as shown by the data of Table IV.  

A relation between B1 and m,n has been presented by 
Spetzler (73) as: 

B I  = 2 + [ ( m  + n ) / 3 1  - [ ( m  + 3 ) ( n  + 3 ) / 9 1 ( P / B 0 )  (9) 
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Figure 6. Generalized bulk moduli of those elements for which data are available (7) 

Figure 7. Generalized tensile moduli of those elements for which data are available (7)  

Table Ill. Generalized Tensile ModuliaEoVo/Ea of Metal Oxides, 
Sulfides, and Carbides 

E o V o l E a  

Cubic metal oxides, sulfides, Be2Cb 
Hexagonal metal oxides, sulfides 

2.9 f 0.26 
2.7 f 0.1 7 

Far fewer tensile modulus data are available for oxides, sulfides, etc., 
than bulk modulus data, and many seem far less reliable and consistent 
with each other. The data used here are from ref. (8) and (3). *Other 
carbides, regardless of crystalline structure, 5 f 1 seemingly. 

Table IV.  Generalized Cubic Thermal Expansion Coefficient of 
Various Solids at T ,> OD 

Compounds 

Alkali and earth-alkali halides and 

Alkali and earth-alkali fluorides 2.2 f 0.1 1.7 f 0.1 
Heavy metal carbides and nitrides 
Diamond 0.43 
Molecular crystals composed of 

rigid molecules (asAHs/Cus )  
(for comparison) 0.44 f 0.04 

oxides (other than fluorides) 1.3 f 0.24 1.0 f 0.21 

0.58 f 0.09' 

which simplifies to the first term when P < Bo.  The pre- 
dicted dependence of B1 on n,m at that condition is 
shown in Figure 9. The few available experimental data 
for ionic and covalent crystals, shown in Table V,  are in 
qualitative agreement with prediction, at least in compari- 
son with data on molecular crystals. However, the quanti- 
tative agreement with the usually postulated 1:9 or simi- 
lar power laws leaves much to be desired. Prediction is 
therefore more safely based on comparisons with similar 
solids, and the guidance from theory should only be used 
for adjustments. 

Substitution of the estimated magnitudes of as and B1 
and their uncertainties in the Anderson-Wachtmann equa- 
tion leads to the uncertainties in the elastic moduli at T 
> OK indicated in Table VI .  The comparatively small rela- 
tive effect of even large uncertainties on the magnitude 
of the moduli is due to the small change of the elastic 
moduli with temperature. 

t 

f = 6  t 5 m = b  

1 
I 

01 I I 1 I 
9 12 I 5  18 21 24 

Figure 8. Theoretical relation between the generalized expan- 
sion coefficient a,u,/fk (taking C, = f k )  and m,n according to 
Equation 8 at V s / V  = 1 

Melting Point 

The most commonly determined property of solids, the 
melting temperature Tm, is not easily related to molecu- 
lar properties of the system because of its composite na- 
ture. Thermodynamically it is the temperature at which 
liquid and solid phases are in equilibrium, at a fixed pres- 
sure, hence 

Tm = A H m / A S m  (10) 

where A H m ,  A S ,  are the changes in enthalpy and entro- 
py, respectively, accompanying the phase change at Tm. 

Journal of Chemical and Engineering Data,  Vol. 18, No. 1, 1973 19 



I 

4 9  12 I 5  18 21 24 

n 

Figure 9. Theoretical relation between €3, and m,n according to 
Eauation 9 

Table V. Pressye Coefficient B1 of the Bulk Modulus of 
Crystalline Solidsa 

bcc fcc Diamond 

Li: 3.6 Cu: 5.6 Mg: 4.3 C: 
Na: 3.6 Ag: 6.2 Si: 4.2 
K: 4.0 Au: 6.4 Cd: 6.3 Ge: 4.4 
Fe: 5.1 AI: 5.8 
Alkali ha!ides: 5.2 f 0.2 
Cubic metal oxides: 3.8 f 0.3 
Molecular crystals: 8 f 1 

a Most of the data are from Ref. (2) and (6). Except for Cd and re- 
lated oxides. 

CS 

0. IC 

O . O E  

0.06 

kr, 
"I 

0.04 

0.02 

C 

Figure 10. Theoretical relation between the generalized melting 
point k T m / u s  and m,n, according to Equation 11 

Since AS, is a measure of the change in order at T m ,  
one can expect AS, to remain constant within a series 
of substances composed of atoms, rigid ions, or rigid 
molecules of the same geometry ( 5 ) .  Hence within such 
families, T m  - A H m .  Furthermore, if A V m / V  is constant 
in that family as well, then A H m  - nuo, and Auo/uo = 
const and thus T m  - u. For such families of compounds 
then, a generalized melting point, k T m / U s  = const, 
should be obtained. 

Again, for monatomic substances of that type k T m / U o  
should be a function of m,n only; specifically, Moelwyn 
Hughes ( 9 )  derived for P = 0 

k T m / U ,  = - [2 m - n / 3 ( n  + m + l ) ( m  - n ) ]  X 

[ ( m  + 3 / n  + 3 ) n l n - m  - ( m  + 3 / n  + 3 ) m / n - m  I (11) 

The generalized melting points so estimated are present- 
ed in Figure 10 as a function of n,m. 

The experimentally observed generalized melting 
points are constant within families of compounds, except, 
generally, for the first member of the series, as shown by 
their mapping on the alkali halide field in Figures 11 and 
12. Several oxide data have been assembled in Table 
V I I ,  and those for the metallic elements in Table V I I I .  
After elimination of substances undergoing solid/solid 
phase transitions, because their melting behavior must 

F' Cl Er I 

Figure 11. Generalized melting point map for alkali halides 
Coulombic model 

2 

1 

0 

C 

F' C i  Er I' 

Figure 12. Generalized melting point map for alkali halides 
Phenomenological model 

be formulated differently, there are still only limited family 
constancies. Among the metals, crystal structure seems 
to be a useful ordering parameter, as might have been 
expected, but it is obviously not the only one. Type of 
bonding (ionic or covalent) seems to play a major role in 
determining the magnitude of the generalized melting 
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Table VI .  Ranges of Uncertainty in the Estirnateaof 
Elastic Moduli at 300 K 

Uncertainty-range of 
modulus 

Zero-point Due to 
modulus, effect of 

Substance class % temp, YO 

Cubic metals f 3 b  f 1 5 C  
Metal oxides and sulfides f 2 0  f8 
Alkali halides f 5 b  f12C 
Heavy metal carbides f 2 0  d 

a Through use of the generalized correlations shown. The data of 
nearly all members of these classes are known to be better than the indi- 
cated uncertainty. CSince the thermal expansion data are quite well 
known, most of this uncertainty is due to the uncertainty in B1. The few 
61 data in Ref. 6 cover such a wide range that one cannot make a mean- 
ingful generalization. 

Table V I I .  Generalized Melting Points ncRT,/2 Ea of 
Various Metal Oxides 

Cubic Lattice 

MgO: 0.078 
CaO: 0.069 
SrO: 0.067 
BaO: 0.056 
Y2O3: 0.0126 
Hf02 :  0.0113 TiO2: 0.0093 (tetragonal) 
ThO2: 0.0128 Zr02: 0.01 16 (monoclinic) 
UOz: 0.0128 

A1203: 0.01 27 (rhombic) 

Table V I I I .  Generalized Melting Points R T m / A H ,  of Metallic Solids 

bcc hcp fcc 

Li: 0.0248 
Na: 0.0259 
K: 0.0297 
Rb: 0.0291 
Cs: 0.0318 
Ti: 0.0435 
Zr: 0.0319 
Hf: 

Mg: 0.0513 
Ca: 0.047 
Sr: 0.0505 
Ba: 0.0455 

V: 0.0332 Cr: 0.0510 Fe: 0.0374 Zn: 0.044 
Nb: 0.0312 Mo: 0.0365 Cd: 0.044 
Ta: 0.0328 W: 0.0360 

Re: 0.0362 

Cu: 0.0329 AI: 0.0246 
Ag: 0.0355 Ga: 0.0093! 
Au: 0.0253 Pb: 0.0247 

Bi: 0.0222 

Co: 0.0333 Ni: 0.0336 
Rh: 0.0320 Pd: 0.0390 
l r :  0.0327 Pt: 0.0298 
Os: 0.0339 

temperature of the salt crystals. This is particularly evi- 
dent from the comparison of the greater constancy, in a 
given group, of the phenomenological form n c k T m / E a  
than that of the form k T m d , j / ( Z e ) ’  which assumes ionic 
bonding to be dominant. 

Considering the comparative ease with which one can 
generally determine the melting temperature, but not Ea 
or d i j ,  of a substance, the value of the correlation is re- 
stricted to the following items: 

Likelihood of a particular combination of elements to 
yield an extremely high or low melting compound is esti- 
mated: the reasonableness of an experimentally deter- 
mined melting temperature is assessed in light of the re- 
quirement of external consistency; and if the observed 
melting point is reliable and the compound fits into a par- 
ticular correlation family, Ea can be roughly estimated 
from the observed T m .  

Conclusions 

The primary purpose of this investigation, the estima- 
tion of unknown equilibrium properties of a given sub- 
stance from the known properties of another substance 
through a physically acceptable scaling procedure, has 
been accomplished with varying degrees of success. Bet- 
ter than order-of-magnitude estimates are possible in all 
cases. The Debye temperature can be estimated to with- 
in f 1 5 % ,  the elastic moduli of nonmetals to within 
f30%, and the thermal expansion coefficient at T > 80 
to within *30%. The melting point appears to be predict- 
able for some classes of ionic crystals but not for others. 
This predictability sequence reflects the state of basic 
understanding of the underlying theory. 

The extension of the method to other properties, such 
as critical temperature, surface free energy, etc., ap- 
peared too obvious to include with the examples present- 
ed. I ts utility depended largely on the general availability 

of the basic scaling parameters such as the energy of 
atomization Ea ( 7 7 ) ,  the zero-point volume V o  (4, or the 
appropriate atomic and ionic radii. When Ea is not avail- 
able from experiment, it can be estimated by the Sander- 
son method ( 7 7 ) .  Similarly, V o  can often be estimated by 
group increments developed by Biltz ( 4 ) ,  Practically 
every elementary text book on solids contains atomic and 
ionic radii: one must just be careful to use self-consistent 
sets of such radii. 

Nomenclature (SI system of units) 

a = lattice parameter, m 
A ,  8 = constants in pair potential Equation 1 
Bo = bulk modulus at zero pressure, Nm- ’  
51 = pressure coefficient of bulk modulus, - 
C, = heat capacity at constant volume, Nm K - ’  

Ccs = lattice heat capacity at constant volume. Nm 

di, 
e = Elementarycharge, (Nm2rnol - l  N A - ’ ) ’  
E = tensile modulus, Nm-’ 
Eo = tensile modulus at OK, Nm- ’  
f = number of external degrees of freedom per atom, 

ion, or molecule on a lattice site, - 
h = Planck’s constant, Nm s mol - ’  N A - ’  
A H m  = heat of fusion per mole, Nm mol- ’  
A H s  = heat of sublimation per mole (or per kg-atom) 

KO = bulk modulus at zero pressure, N m - *  
k = Boltzmann constant, Nm K - ’  mol- ’  N A - ’  
m = mass per atom or ion, kg atom- ’  N A - ’  
f i  
m,n = exponents in pair potential Equation 1 .  - 
M = weight per mole or per kg-atom, kg mol- ’  
N A  = Avogadro’s number, mol- ’  

mol - 

K - ’ m o l - ’  
= distance between centers of ions on a lattice, m 

at OK, Nm mol- ’  

= reduced mass per atom or ion, kg atom-’ N A - ’  
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r i , j  = radius of ion i o r  j ,  m 
R = gas constant, Nm K- '  mol-' 
AS, = entropyof fusion, Nm K - '  mol - '  
Tm = melting point in absolute temperature scale, K 
uo = pair potential at equilibrium distance ro, Nm 

us = energy of sublimation per atom or molecule at 

Vo 
2 = number of charges per ion active in electrostatic 

Greek Letters 

as = cubic thermal expansion coefficient, K - '  
p* = packing density, - 
60 = Debye temperature = wDh/k, K 
OD = Debye frequency, s - '  

Basic Units 

N = Newton 
m = meter 
K = Kelvin 

mol- l  N A - ~  

OK, Nm mol- l  N A - ~  
= volume per mole or kg-atom at OK, m3 mol - l  

interaction between adjacent ions, - 

kg = kilogram 
mol = kg mole or atom 
s = second 
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Thermochemistry of N,N-Dimethyl-p-nitrosoaniline Complexes 
Salvatore Gurrieri, Rosario Cali, and Giuseppe Siracusa 
lstituto di Chimica Generale ed Inorganica, Universita di Catania. 95 125 ltalia 

Enthalpies of formation of crystalline, oxygen-bonded - -  
MnLC12, CoL2C12, and NiLC12 (L = N,N-dimethyl-p- 
nitrosoaniline) from crystalline anhydrous metal chlorides 
and ligand have been obtained by reaction calorimetry. 
The values found at 25" f 0.001"C are, respectively, 
-8.85 f 0.15; -10.12 f 0.24; -11.71 f 0.16 kcal/ 
mol. The enthalpies of formation of gaseous complexes 
cannot be measured, since these decompose without any 
phase transition when heated, as indicated by thermal 
analysis. 

N,N-dimethyl-p-nitrosoaniline complexes with some 
transition metals were previously investigated; the ligand 
behaves as a monodentate and coordinates through the 
nitroso oxygen ( 2 ) .  Successively Popp and Ragsdale ( 5 )  
came to the same conclusion; Batten and Johnson do 
not preclude that, in the Pd-N,N-dialkyl-p-nitrosoaniline 
complexes, the ligands coordinate through the nitroso 
oxygen. Other papers ( 1 ,  2. 5 )  deal with the use of N,N- 
dialkyl-p-nitrosoanilines as reagents in the spectrophoto- 
metric determination of Pt group metals and in the prepa- 
ration of several complexes having fungicidal properties. 

Continuing our studies on nitroso derivative ligands we 
report now the calorimetric determination of the enthal- 
pies of formation of crystalline complexes MnLC12, CoLp- 
Clz, and NiLC12 (L = N,N-dimethyl-p-nitrosoaniline) from 
crystalline anhydrous metal chlorides and crystalline lig- 
ands. 

' To whom correspondence should be addressed. 

Experimental 

Materials. M n CI 2.4 H 2 0 ,  CoCl2 6 H 2 0 ,  N iCl2 a 6  H 2 0 ,  and 
N,N-dimethyl-p-nitrosoaniline (C. Erba RP) were em- 

H1 oN2O) CI2 were prepared as previously described ( 2 ) .  
All salts and complexes are completely soluble in 1.00M 
aqueous HCI. 

Calorimetric measurements. A calorimetric equipment 
LKB Model 8700-1 was employed. The measurements 
were performed at 25" f 0.001 "C. 

The calorimetric cell was charged with 100 ml of aque- 
ous 1 .OOM HCI. After equilibration the reaction was start- 
ed by breaking a thin-walled glass ampul containing 2-3 
mmoles of solid reactant; the reaction periods for all ex- 
periments were short and the rates of heat evolution 
were exponential with time. 

The expression ( R ,  - R j ) / ( R ,  + R j )  was considered 
proportional to the temperature change. 

The mean temperature of the reaction period was cal- 
culated to the time for 0.632 of total heat evolution (6). 

In each experiment two electrical calibrations of the 
system were performed before and after reaction. Since 
the heat evolution is linear with time, the mean tempera- 
ture corresponds to the time for half the temperature rise 
(6). The reproducibility of the electrical equivalent was 
usually better than f0.2%. The enthalpies of reaction 
were calculated by using a Hewlett-Packard 9100 B cal- 
culator and an appropriate program. 

Thermal analysis. Simultaneous thermogravimetric 
(TG) and differential thermal analysis (DTA) were per- 
formed using a Mettler thermoanalyzer, at different heat- 
ing rates, in vacuum and dynamic nitrogen atmosphere. 

ployed. Mn (CeH 1 oN20)Cl2, CO(C8H1 oN2O) 2CI2, and Ni (c8- 

22 Journal of Chemical and Engineering Data, Vol. 18, No. 1, 1973 


